Skip to content

Coretemperature

Auto-generated from CoreTemperature.h with comprehensive documentation

Thermal management is critical for magnetic component reliability. MKF provides models for: - Core temperature rise from core losses - Winding hot-spot temperature - Thermal resistance estimation

Temperature affects: - Core losses (Steinmetz parameters are temperature-dependent) - Winding resistance (copper has +0.39%/°C temperature coefficient) - Saturation flux density (decreases with temperature) - Component lifetime (every 10°C reduces life by ~50%)

Available Models

Maniktala

Maniktala's empirical formula for temperature rise:

$$\Delta T = \left(\frac{P_{total}}{A_{surface}}\right)^{0.833}$$

Where: - $P_{total}$ is total power loss (W) - $A_{surface}$ is effective cooling surface area (cm²) - Result is temperature rise in °C

Simple and practical for initial estimates and design iteration.

Reference: Maniktala, S. "Switching Power Supplies A-Z." Newnes, 2012.

Validation Error: 24.8% mean deviation

Reference: Maniktala, S. 'Switching Power Supplies A-Z.' Newnes, 2012

Kazimierczuk

Kazimierczuk's thermal model separates core and winding contributions:

$$\Delta T_{core} = R_{th,core} \cdot P_{core}$$ $$\Delta T_{winding} = R_{th,winding} \cdot P_{winding}$$

Thermal resistances are calculated from geometry and material properties. More accurate than empirical formulas but requires more parameters.

Reference: Kazimierczuk, M.K. "High-Frequency Magnetic Components." Wiley, 2014.

Validation Error: 25.8% mean deviation

Reference: Kazimierczuk, M.K. 'High-Frequency Magnetic Components.' Wiley, 2014

TDK

TDK's thermal models are empirically derived from extensive testing of their ferrite cores. Provides manufacturer-specific accuracy for TDK materials.

Validation Error: 51.5% mean deviation

Reference: TDK Ferrites and Accessories Application Notes

Dixon

Dixon's thermal resistance approximation for pot cores and similar shapes:

$$R_{th} \approx \frac{50}{A_{surface}^{0.7}}$$ (°C/W)

Where $A_{surface}$ is in cm².

Validation Error: 24.6% mean deviation

Reference: Dixon, L. 'Magnetics Design for Switching Power Supplies.' Texas Instruments

Amidon

Amidon's thermal data is empirically derived for their iron powder and ferrite cores. Useful when designing with Amidon (Micrometals) materials.

Validation Error: 25.4% mean deviation

Reference: Amidon Corp. Technical Specifications

Model Comparison

Model Error Reference
Maniktala 24.8% Link
Kazimierczuk 25.8% Link
TDK 51.5% Link
Dixon 24.6% Link
Amidon 25.4% Link

Thermal Model Selection

Application Recommended Notes
Quick estimates Maniktala Simple, conservative
Detailed analysis Kazimierczuk Separates loss sources
TDK cores TDK Manufacturer data
Worst-case Use lowest thermal resistance estimate Safety margin

Thermal Resistance Models: The thermal resistance between core/winding and ambient depends on: - Cooling method (natural convection, forced air, heat sink) - Surface treatment (painted, bare, potted) - Mounting orientation (vertical, horizontal) - Ambient temperature and altitude

Design Margin: Add 10-15°C margin for component reliability.

Usage

#include "physical_models/CoreTemperature.h"

// Create a specific model
auto model = OpenMagnetics::CoreTemperatureModel::factory(
    OpenMagnetics::CoreTemperatureModels::MANIKTALA
);

// Or use the default model
auto model = OpenMagnetics::CoreTemperatureModel::factory();

Configuring Default Model

auto& settings = OpenMagnetics::Settings::GetInstance();
// settings.set_coretemperature_model(OpenMagnetics::CoreTemperatureModels::...);

Usage

#include "physical_models/CoreTemperature.h"

// Create a specific model
auto model = OpenMagnetics::CoreTemperatureModel::factory(
    OpenMagnetics::CoreTemperatureModels::MANIKTALA
);

// Or use the default model
auto model = OpenMagnetics::CoreTemperatureModel::factory();

Configuring Default Model

auto& settings = OpenMagnetics::Settings::GetInstance();
// settings.set_coretemperature_model(OpenMagnetics::CoreTemperatureModels::...);