Coretemperature¶
Auto-generated from CoreTemperature.h with comprehensive documentation
Thermal management is critical for magnetic component reliability. MKF provides models for: - Core temperature rise from core losses - Winding hot-spot temperature - Thermal resistance estimation
Temperature affects: - Core losses (Steinmetz parameters are temperature-dependent) - Winding resistance (copper has +0.39%/°C temperature coefficient) - Saturation flux density (decreases with temperature) - Component lifetime (every 10°C reduces life by ~50%)
Available Models¶
Maniktala¶
Maniktala's empirical formula for temperature rise:
$$\Delta T = \left(\frac{P_{total}}{A_{surface}}\right)^{0.833}$$
Where: - $P_{total}$ is total power loss (W) - $A_{surface}$ is effective cooling surface area (cm²) - Result is temperature rise in °C
Simple and practical for initial estimates and design iteration.
Reference: Maniktala, S. "Switching Power Supplies A-Z." Newnes, 2012.
Validation Error: 24.8% mean deviation
Reference: Maniktala, S. 'Switching Power Supplies A-Z.' Newnes, 2012
Kazimierczuk¶
Kazimierczuk's thermal model separates core and winding contributions:
$$\Delta T_{core} = R_{th,core} \cdot P_{core}$$ $$\Delta T_{winding} = R_{th,winding} \cdot P_{winding}$$
Thermal resistances are calculated from geometry and material properties. More accurate than empirical formulas but requires more parameters.
Reference: Kazimierczuk, M.K. "High-Frequency Magnetic Components." Wiley, 2014.
Validation Error: 25.8% mean deviation
Reference: Kazimierczuk, M.K. 'High-Frequency Magnetic Components.' Wiley, 2014
TDK¶
TDK's thermal models are empirically derived from extensive testing of their ferrite cores. Provides manufacturer-specific accuracy for TDK materials.
Validation Error: 51.5% mean deviation
Reference: TDK Ferrites and Accessories Application Notes
Dixon¶
Dixon's thermal resistance approximation for pot cores and similar shapes:
$$R_{th} \approx \frac{50}{A_{surface}^{0.7}}$$ (°C/W)
Where $A_{surface}$ is in cm².
Validation Error: 24.6% mean deviation
Reference: Dixon, L. 'Magnetics Design for Switching Power Supplies.' Texas Instruments
Amidon¶
Amidon's thermal data is empirically derived for their iron powder and ferrite cores. Useful when designing with Amidon (Micrometals) materials.
Validation Error: 25.4% mean deviation
Reference: Amidon Corp. Technical Specifications
Model Comparison¶
| Model | Error | Reference |
|---|---|---|
| Maniktala | 24.8% | Link |
| Kazimierczuk | 25.8% | Link |
| TDK | 51.5% | Link |
| Dixon | 24.6% | Link |
| Amidon | 25.4% | Link |
Thermal Model Selection¶
| Application | Recommended | Notes |
|---|---|---|
| Quick estimates | Maniktala | Simple, conservative |
| Detailed analysis | Kazimierczuk | Separates loss sources |
| TDK cores | TDK | Manufacturer data |
| Worst-case | Use lowest thermal resistance estimate | Safety margin |
Thermal Resistance Models: The thermal resistance between core/winding and ambient depends on: - Cooling method (natural convection, forced air, heat sink) - Surface treatment (painted, bare, potted) - Mounting orientation (vertical, horizontal) - Ambient temperature and altitude
Design Margin: Add 10-15°C margin for component reliability.
Usage¶
#include "physical_models/CoreTemperature.h"
// Create a specific model
auto model = OpenMagnetics::CoreTemperatureModel::factory(
OpenMagnetics::CoreTemperatureModels::MANIKTALA
);
// Or use the default model
auto model = OpenMagnetics::CoreTemperatureModel::factory();
Configuring Default Model¶
auto& settings = OpenMagnetics::Settings::GetInstance();
// settings.set_coretemperature_model(OpenMagnetics::CoreTemperatureModels::...);
Usage¶
#include "physical_models/CoreTemperature.h"
// Create a specific model
auto model = OpenMagnetics::CoreTemperatureModel::factory(
OpenMagnetics::CoreTemperatureModels::MANIKTALA
);
// Or use the default model
auto model = OpenMagnetics::CoreTemperatureModel::factory();